

## 2020 DOE Vehicle Technologies Office Annual Merit Review



# Integrated Motor and Drive for Traction Applications

**Project ID: elt243** 

Dr. Bulent Sarlioglu (PI) Dr. Thomas Jahns (Co-PI)

Wisconsin Electric Machines and Power Electronics Consortium (WEMPEC)

University of Wisconsin-Madison

June 1-4, 2020



## **Overview**

#### **Timeline**

- Project start date: 4/01/2019
- Project end date: 3/31/2024
- Percent Complete: 20%

#### **Budget**

- Total project funding
  - DOE's share: \$ 1,500,000
- Funding for FY 2019: \$ 300,000
- Funding for FY 2020: \$ 300,000

#### **Barriers and Technical Targets**

- Multi-physics integration of power electronics with machine to enhance performance metrics
- High-temperature power electronics availability and cost
- High-performance machine materials availability and cost
- Advanced thermal management for machine & power electronics

#### **Partners**

- Oak Ridge National Laboratory (ORNL)
- National Renewable Energy Laboratory (NREL)



#### Relevance

#### **Objective**

Pursue an aggressive research program to merge high-torque-density traction machines and highefficiency inverters into state-of-the-art integrated motor drives (IMDs) packaged inside combined housings
that will exceed existing traction drive performance metrics in several categories, as follows:

| Electric Motor Requirements   |       |  |  |  |  |
|-------------------------------|-------|--|--|--|--|
| Metric                        | Value |  |  |  |  |
| Cost (\$/kW)                  | ≤ 3.3 |  |  |  |  |
| Power Density (kW/L)          | ≥ 50  |  |  |  |  |
| System Peak Power Rating (kW) | 100   |  |  |  |  |

| Power Electronics Requirements |       |  |  |  |  |
|--------------------------------|-------|--|--|--|--|
| Metric                         | Value |  |  |  |  |
| Cost (\$/kW)                   | ≤ 2.7 |  |  |  |  |
| Power Density (kW/L)           | ≥ 100 |  |  |  |  |
| System Peak Power Rating (kW)  | 100   |  |  |  |  |



#### Impact of research

- Reduced overall mass and volume
- Modular architecture
- Co-packaged motor and drive
- Shared thermal management system

- → Future EVs with higher power rating and efficiency
- Reduced manufacturing cost and higher fault tolerance/reliability
- → Higher power density with lower EMI emissions and reduced cost
- Simplification leading to reduced coast and enhanced reliability

Our project aims to develop advanced IMD technology that will benefit Electric Vehicle manufacturers for achieving major performance improvements at lower cost



## Milestones for Budget Period 1

#### **April 2019 to March 2020**

| Milestone Title and Description                                                    | Completion<br>Date | Description of Verification Method                                                                                            | Status    |
|------------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------|
| Define machine and inverter configurations for trade-off study                     | 09/30/2019         | Review literature to identify initial list of machine and inverter topologies that deserver further investigation             | Completed |
| Machine and inverter topology review                                               | 11/30/2019         | Analyze machine and inverter candidates to evaluate trade-offs.                                                               | Completed |
| Down-select machine configurations                                                 | 01/12/2020         | Assign numerical rankings to machine and inverter topologies and down-select.                                                 | Completed |
| Inverter performance analysis with simulation                                      | 03/31/2020         | Use simulation tools to predict inverter performance                                                                          | Completed |
| Go/No Go Decision Title: Trade-off study for electric machine & inverter completed | 01/12/2020         | Use numerical rankings aligned with Table A performance targets to choose most promising candidates for further investigation | Completed |

All planned tasks for Budget Period 1 successfully completed



## Milestones for Budget Periods 2 and 3

#### Milestones for Budget Period 2 (April 2020 to March 2021)

| Milestone                                              | Туре      | Description                                                                                            |
|--------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------|
| Motor electromagnetic design                           | Technical | Perform the design of the electric machine and specify the machine parameters                          |
| PCB fabrication for benchtop prototype                 | Technical | PCB for benchtop prototype is designed and fabricated for testing                                      |
| Motor mechanical design                                | Technical | Verify the mechanical design of the motor with ORNL and NREL, deliver the final design for prototyping |
| Performance analysis of benchtop prototype inverter    | Technical | Evaluate the performance of the benchtop prototype inverter                                            |
| Go/No Go Decision:<br>Preliminary IMD Design Completed | Go/No Go  | Drawings, schematics are ready for making the prototype motor and benchtop inverter.                   |

#### Milestones for Budget Period 3 (April 2021 to March 2022)

| Milestone                                                                       | Туре      | Description                                                                                                      |
|---------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------|
| Detailed prototype machine and inverter design                                  | Technical | Complete the detailed design of the prototype machine and inverter in preparation for fabrication                |
| Fabricate prototype machine                                                     | Technical | Support fabrication of prototype machine                                                                         |
| Fabricate prototype inverter                                                    | Technical | Complete the fabrication of the prototype inverter                                                               |
| Initial testing of prototype inverter and machine                               | Technical | Conduct inverter to verify their performance capabilities initial tests of prototype machine                     |
| Go/No Go Decision: Complete the fabrication of the prototype machine & inverter | Go/No Go  | Complete fabrication of prototype machine and inverter including performance verification testing as components. |



## **Approach**

- Perform trade-off study for IMD electric motor
  - Investigate new motor topologies and material technologies
  - Analyze state-of-the-art preliminary motor designs by performing analysis and FEA
  - Compare promising preliminary designs
  - Down-select most promising electric motor for IMD configuration from trade-off study
- Investigate promising IMD inverter topologies and conduct trade-off study
  - Investigate most appealing inverter topologies for IMD traction applications
  - Investigate *state-of-the-art technologies* in power switches, passive components, and cooling
  - Perform trade-off study comparing Voltage Source Inverter (VSI) and Current Source Inverter (CSI) topologies
  - Select most promising inverter topology and associated components for further development
  - Verify the performance of the selected motor drive configuration using analysis and simulation
- Carry out preliminary IMD testbed preparation



Achievements during Budget Period 1 (4/1/2019 to 3/31/2020)

#### **Motor**

- Investigated alternative motor types for traction application
- Developed preliminary designs of several Surface Permanent Magnet (SPM) machines
- Designed preliminary designs of spoke-type and V-shape Internal PM (IPM) machines
- Performed tradeoff study to select the best IMD traction motor candidates (Pugh analysis)

#### Inverter

- Investigated alternative inverter topologies, including VSI vs. CSI comparisons
- Analyzed applicability of available Wide Bandgap (WBG) devices and passive components
- Performed trade-off study to select the best IMD inverter candidates (Pugh analysis)

#### IMD (Combined Motor and Inverter)

- Performed trade-off study to select the preferred IMD motor/inverter configuration (Pugh analysis)
- Prepared preliminary IMD testbed for next phase of project

Focus throughout work to date has been on optimizing the combined IMD system



### **Motor Tradeoff Study**

## SPM Machine with Concentrated Windings



**Spoke-Type IPM Machine** with Distributed Windings



V-shape IPM Machine with Concentrated Windings



## V-Shape IPM Machine with Distributed Windings



- Focus has been on PM machines because of their superior power density
- DOE guidelines have been followed to avoid magnets with heavy rare-earth materials and expensive lamination materials (e.g., CoFe)
- Attention focused on maximizing power density and minimizing cost

Several different types of permanent magnet machines have been investigated and compared for tradeoff study



### Example: Surface PM Traction Motor Design Details

# SPM Machine with Concentrated Windings



FEA-Calculated Von-Mises Stress:

Permanent magnets are bonded to sleeve
and frictionless with rotor core



Flux Density Distribution in SPM Machine at Peak Torque



FEA-Calculated Von-Mises Stress:

Permanent magnets are frictionless

with both sleeve and rotor core



| Value                      |
|----------------------------|
| 10JNHF600<br>Si Steel      |
| N38 NdFeB<br>No Dysprosium |
| 18/12                      |
| 3,200                      |
| 20,000                     |
| 55/100                     |
| 25.4                       |
| 96.5                       |
|                            |

SPM machine is one of the promising machine candidates for IMD

Studies have been carried out for IPM machines as well.



### Traction Motor Trade-off Results from Pugh Analysis

| Criteria                            | Weight | SPM Machine |          | Spoke IPM |          | V-shape IPM |          |
|-------------------------------------|--------|-------------|----------|-----------|----------|-------------|----------|
| Ontona                              | factor | Rating      | Weighted | Rating    | Weighted | Rating      | Weighted |
| Volume                              | 5      | 5           | 25       | 4         | 20       | 4           | 20       |
| Cost                                | 5      | 3           | 15       | 3         | 15       | 4           | 20       |
| Field weakening capability          | 5      | 5           | 25       | 5         | 25       | 5           | 25       |
| Efficiency                          | 5      | 5           | 25       | 4         | 20       | 4           | 20       |
| High temperature capability         | 3      | 3           | 9        | 4         | 12       | 4           | 12       |
| Mass                                | 3      | 5           | 15       | 3         | 9        | 4           | 12       |
| SC fault vulnerability              | 2      | 3           | 6        | 4         | 8        | 4           | 8        |
| Modularity (Concentrated windings ) | 2      | 5           | 10       | 5         | 10       | 5           | 10       |
| Noise                               | 4      | 5           | 20       | 5         | 20       | 5           | 20       |
| Score                               |        |             | 150      |           | 139      |             | 147      |

- The SPM machine has smaller rotor volume compared with other PM motor candidates with magnets inside rotor
- Less magnet is needed to produce the same torque for V-shape IPM motor → lower cost
- Optimal field weakening can be achieved by adopting fractional-slot concentrated windings
- The rotor losses in the SPM machine are lower than for other IPM machines → Higher efficiency with improved cooling
- The volume and mass of the SPM machine is smaller than for other IPM machines

- Requirement specified in the SOPO
- Requirement specified in the U.S. DRIVE roadmap
- Other important requirements for electric machine

SPM machine rated the most promising candidate for IMD system, with V-shape IPM machine also ranking high in study



VSI vs. CSI Overview Comparison

#### **Topology**



#### DC Link



Fragile and temperature-limited

#### **Output Voltage**



High dv/dt, creating motor insulation stress

#### Common-Mode EMI



High Common Mode (CM)
EMI and bearing current risk



Rugged and capable of high temperature



Low-THD sinusoidal voltage and current waveforms



Integral LC filter provides appealing EMI roll-off

WBG-based Current-Source Inverter (CSI) overcomes many of the VSI limitations by significantly lowering output dv/dt stress, CM EMI emissions, bearing current risks, and temperature limitations



**VSI** 

Tcbus

# **Technical Accomplishments and Progress**

Output Power Capability of VSI vs. CSI for CPSR



E 200 and 150

100

50

CSI operates as a boost-type inverter which offers advantages over VSI for traction motor applications by extending the constant-power speed range

15

20

Torque

100

50

5

50

20

**FEA Torque** 

10

15



### Efficiency Comparison of VSI and CSI Power Converters



2-Level CSI with DC/DC Converter

2-Level VSI with Sine Filter

2-Level VSI with Sine Filter and DC/DC Converter

| RPM                                                                          | Power<br>(kW) | 2-level CSI<br>with dc/dc<br>converter | 2-level VSI<br>with sine<br>filter | 2-level VSI with sine filter and dc/dc converter |  |  |
|------------------------------------------------------------------------------|---------------|----------------------------------------|------------------------------------|--------------------------------------------------|--|--|
| 3,200                                                                        | 55            | 98.79                                  | 98.89                              | 98.63                                            |  |  |
| 3,200                                                                        | 100           | 98.07                                  | 98.38                              | 97.99                                            |  |  |
| 20,000                                                                       | 100           | 98.12                                  | 98.51                              | 98.05                                            |  |  |
| Operating condition: 55 kW output power, 50 kHz switching frequency, 650 Vdc |               |                                        |                                    |                                                  |  |  |

- Several power converter configurations were analyzed to compare their capabilities for meeting the DOE project performance metrics
- Modeled the VSI and CSI topologies in PLECS using device manufacturer's SiC device models to predict the efficiency
- Compared performance of power converters for predicted efficiency, EMI/EMC performance, and boost function of inverter output voltage for Constant Power Speed Ratio (CPSR) capability

2-level CSI with DC/DC converter and 2-level VSI with sine filter and dc/dc converter provide nearly the same field weakening and output voltage waveform quality, providing a fair comparison

2-level VSI with sine filter and dc/dc converter has lower predicted efficiency than the other two



#### Pugh Analysis of Inverter Candidates

| Criteria                    |   |        | CSI with 2-level sine file |        | VSI with | 2-level VSI with sine filter and dc/dc converter |          |
|-----------------------------|---|--------|----------------------------|--------|----------|--------------------------------------------------|----------|
|                             |   | Rating | Weighted                   | Rating | Weighted | Rating                                           | Weighted |
| Volume                      | 5 | 5      | 25                         | 5      | 25       | 4                                                | 20       |
| Cost                        | 5 | 4      | 20                         | 5      | 25       | 4                                                | 20       |
| Field weakening capability  | 5 | 5      | 25                         | 3      | 15       | 5                                                | 25       |
| WBG capability              | 5 | 4      | 20                         | 4      | 20       | 4                                                | 20       |
| Efficiency                  | 5 | 5      | 25                         | 5      | 25       | 4                                                | 20       |
| High temperature capability | 3 | 5      | 15                         | 4      | 12       | 4                                                | 12       |
| Score                       |   |        | 130                        |        | 122      |                                                  | 117      |

- Requirements specified in the SOPO
- Requirements specified in the U.S. DRIVE roadmap

- Volume of VSI's sine filter penalizes its power density performance metric
- 2-level VSI with sine filter has fewest components → lowest cost
- The boost function of CSI and 2-level VSI with dc/dc converter both yield high CPSR capability
- Based on simulation estimates, 2-level CSI with dc/dc converter and 2-level VSI with sine filter have the *highest efficiency* predictions
- Replacement of the VSI's dc-link capacitor with an *inductor* in the CSI eliminates one of the most thermally-limiting power circuit components

2-level CSI with a dc/dc converter evaluated to be the strongest candidate topology for the IMD system based on trade study comparison

# WEMPEC

## **Technical Accomplishments and Progress**

**Preliminary IMD Configuration** 

**IMD Exploded View** 



#### Preliminary Power Converter Layout



#### **Notes:**

- Cooling not shown
- Housing and structure for illustration purposes only
- Detailed IMD design will be performed during next Budget Period



Axial-mounted power converter represents one promising topology for IMD configuration



## Pugh Analysis of Integrated Motor Drive (Motor + Inverter)

| Weight dc/                  |   | dc/dc d | l-level CSI with<br>lc/dc converter<br>PM machine |        | 2-level VSI with sine filter + PM machine |        | 2-level VSI with sine filter and dc/dc converter + PM machine |  |
|-----------------------------|---|---------|---------------------------------------------------|--------|-------------------------------------------|--------|---------------------------------------------------------------|--|
|                             |   | Rating  | Weighted                                          | Rating | Weighted                                  | Rating | Weighted                                                      |  |
| High temperature capability | 3 | 5       | 15                                                | 4      | 12                                        | 4      | 12                                                            |  |
| EMI                         | 4 | 3       | 12                                                | 3      | 12                                        | 3      | 12                                                            |  |
| Parts count                 | 4 | 4       | 16                                                | 5      | 20                                        | 4      | 16                                                            |  |
| Weight                      | 3 | 5       | 15                                                | 4      | 12                                        | 3      | 9                                                             |  |
| Fault tolerance             | 2 | 4       | 8                                                 | 2      | 4                                         | 2      | 4                                                             |  |
| Modularity                  | 2 | 1       | 2                                                 | 1      | 2                                         | 1      | 2                                                             |  |
| Score                       |   |         | 68                                                |        | 62                                        |        | 56                                                            |  |

- Requirements specified in the U.S. DRIVE roadmap
- Other important requirements for IMD

- Since our project focuses on IMD concept, an additional trade study was carried out to provide a composite score for IMD including both motor and inverter trade-off
- CSI holds advantages over VSI in IMD applications because of its better suitability for *high-temperature* operation in proximity to machine end windings
- IMD using 2-level VSI with sine filter has fewest components but it suffers in other metric categories
- IMD using the 2-level CSI with a dc/dc converter has the lowest number of passive components which helps to minimize power converter volume
- CSI is much better at surviving short-circuit faults with PM machines than VSI due to absence of freewheeling diodes in CSI

IMD configuration using 2-level CSI with dc/dc converter with PM machine has been selected as the preferred candidate for development during next phase of this project



**Preliminary IMD Testbed Preparation** 



#### Our IMD testbed will include.

- High performance oscilloscope and probes
- Power analyzer
- DC power supply
- 4-Quadrant dynamometer



Components and equipment for high-performance IMD testbed are being procured



# Responses to Previous Year Reviewer's Comments

This is the first year that the project has been reviewed.



# Collaboration and Coordination with Other Institutions

#### Oak Ridge National Laboratory (ORNL)



- UW-Madison participates in biweekly telecon meetings with ORNL and other participating universities to discuss the project progress and design requirements
- Prof. Sarlioglu and Jahns and their students informally met with Dr. Ozpineci, Dr. Guijia Su, and
   Dr. Jason Pries of ORNL at the IEEE ECCE conference in Baltimore last September

#### National Renewable Energy Laboratory (NREL)



- Prof. Jahns visited NREL this year and initialized discussion about project with Dr. Sreekant Narumanchi who leads the thermal design group.
- UW-Madison and NREL had follow-up telecons to discuss the project and collaboration opportunities

Partnership collaboration with National Labs will expand during 2<sup>nd</sup> project year



## Remaining Challenges and Barriers

- Multi-physics integration of IMD to achieve optimal use of volume and cost
- Advanced thermal management for IMD to limit maximum temperatures of magnets and power converter
- Availability of high-temperature power electronics and high-performance machine materials at low cost



IMD concept requires aggressive multi-physics design to optimize motor drive system for volumetric power density and cost



## **Proposed Future Research**

#### **Budget Period 2: Preliminary IMD Design**

#### We plan to carry out following tasks:

#### **Task 2.1 – Electric Machine Design**

- Design electric machine using analysis, simulations, and FEA software to evaluate and optimize performance metrics
- Collaborate with ORNL and NREL to address multi-physics technical issues including mechanical, structural, and thermal design

#### **Task 2.2 – Development of Benchtop Prototype Inverter**

- Evaluate all key performance metrics including power density, cost efficiency, and EMI/EMC characteristics
- Design gate drives, passive components, and controller unit
- · Fabricate and test the benchtop inverter to retire technical risks



150

150 kHz

CM EMI (dB









2<sup>nd</sup> year will provide critical opportunity to convert promising IMD concept into machine and inverter designs for rigorous multi-physics evaluation



# **Summary**

- Integration of power electronics inside machine represents one of the most promising approaches for making major progress to reach challenging DOE performance metrics
  - Demands systems-oriented, multi-physics-based approach to achieve success
  - Opens promising avenues to boost power density and lower cost, with valuable additional benefits in areas such as reliability/fault tolerance
- First year of project has succeeded in identifying the most promising machine and power converter technologies for future IMDs to meet DOE metrics
  - > Thorough trade-off studies have played a key role in identifying best candidates
  - PM machines combined with CSI power electronics has emerged as the most promising approach for designing IMDs to achieve performance metrics
- 2<sup>nd</sup> year will focus on converting IMD concept into a preliminary design for evaluation
  - Multi-physics analysis will be critical for optimizing design for highest performance
  - Retire key technical risks using experimental benchtop prototype inverter

Promising start for developing advanced IMD to meet DOE objectives



# **Technical Backup Slides**



Interior PM Machine with Distributed Winding Traction

**Motor Design Details** 

## IPM machine with distributed winding



**Von-Mises stress** 



Flux density distribution IPM machine at peak condition



**Displacement** 



| Parameter                  | Value                      |
|----------------------------|----------------------------|
| Stator/rotor material      | 10JNHF600                  |
| Magnet material            | N38 NdFeB<br>No dysprosium |
| Stator slots / Rotor poles | 72/12                      |
| Rotor corner speed [rpm]   | 3,200                      |
| Rotor max speed [rpm]      | 20,000                     |
| Rated Power [kW]           | 55                         |
| Peak Power [kW]            | 100                        |
| Peak Power density [kW/l]  | 22.9                       |
| Efficiency @ 55 kW         | 96.5                       |
|                            |                            |

IPM machine with distributed winding has been investigated to meet the requirements



Interior PM Machine with Concentrated Winding Traction

**Motor Design Details** 

# IPM machine with concentrated winding



**Von-Mises stress** 



Flux density distribution IPM machine at peak condition



**Displacement** 



| Parameter                  | Value                      |
|----------------------------|----------------------------|
| Stator/rotor material      | 10JNHF600                  |
| Magnet material            | N38 NdFeB<br>No dysprosium |
| Stator slots / Rotor poles | 18/12                      |
| Rotor corner speed [rpm]   | 3,200                      |
| Rotor max speed [rpm]      | 20,000                     |
| Rated Power [kW]           | 55                         |
| Peak Power [kW]            | 100                        |
| Peak Power density [kW/l]  | 21.5                       |
| Efficiency @ 55 kW         | 95.5                       |
|                            |                            |

IPM machine with concentrated winding has been investigated to meet the requirements



## Investigation of New Motor Designs and Materials

- Investigated new motor technologies including following
- High-energy magnet materials with high temperature capability (no heavy rare earth)
- Insulation materials with high thermal conductivity, low weight and volume, and corona resistance
- Lightweight and high-strength composite materials
- Advanced electromagnetic design incorporating various materials and structural advances
- Advanced thermal management concepts



B-H curve of N38 NdFeB magnet

| TABLE II Properties for Insulation Material |       |  |  |  |  |
|---------------------------------------------|-------|--|--|--|--|
| Property                                    | Value |  |  |  |  |
| Thermal conductivity [W/mK]                 | 1.9   |  |  |  |  |
| Dielectric strength [kV/mm]                 | 18.5  |  |  |  |  |
| Mixed specific gravity @25°C                | 2.73  |  |  |  |  |

CoolTherm EP-2000 from Lord





3D-DWHX concept in a stator



TORAYTORAYCA Carbon fiber

Identified the best materials for our project from our survey for high energy magnet, insulation materials, composite materials, electromagnetic design, and thermal management



**Current Source Inverter with WBG devices** 

#### Enablers

- WBG (SiC and GaN)
- High efficiency and high frequency inductor

DOE Requirements

CS

Output

#### Controls

High performance DSP

High power density

High efficiency

Good EMI/EMC performance

Output voltage almost sinusoidal

Low PWM harmonics

Good field weakening capability

Output voltage boost function

High temperature capability

No DC Link capacitor



- Current source inverter (CSI) is a dual topology of traditional VSI
- The dc-link capacitor in the VSI is replaced by the dc-link inductor, and three small capacitors are added at CSI's output terminals
- The dc-link inductor of CSI can be dramatically reduced in mass and volume because of high switching frequency values of WBG
- The <u>high-frequency WBG</u> switches is the enabler for CSI to come back
- The CSI has less EMI issue than VSI because of filtering effect of output capacitors for the output voltage.



Survey on WBG devices, passive components, and cooling methods

- Surveyed and analyzed WGB (SiC and GaN) power semiconductor devices
  - Investigated FET + Diode vs FET + FET configuration for RVB switch for CSI

| Company        | Part No.            | Vds (V) | ld @ 25C (A) | Rds @ 25°C (Ω) | Packaging   |
|----------------|---------------------|---------|--------------|----------------|-------------|
| Transphorm     | TP65H050BS*         | 650     | 34           | 0.05           | TO-263      |
| Transphorm     | TP90H050WS*         | 900     | 34           | 0.050          | TO-247      |
| GaN Systems    | GS-065-150-1-D      | 650     | 150          | 0.01           | Die         |
| OnSemi         | NVHL080N120SC1OS-ND | 1200    | 44           | 0.11           | TO-247      |
| Littelfuse Inc | LSIC1MO120E0120     | 1200    | 27           | 0.150          | TO-247      |
| CREE           | C3M0016120K         | 1200    | 115          | 0.016          | TO-247      |
| CREE           | C2M1000170D         | 1700    | 4.9          | 1.1            | TO-247      |
| CREE           | CAB450M12XM3        | 1200    | 450          | NA             | Half-Bridge |
| GeneSiC        | GA50JT12-247        | 1200    | 100          | 0.025          | TO-247      |
| GeneSiC        | GA08JT17-247        | 1700    | 8            | 0.25           | TO-247      |
| ROHM           | SCT3017ALHRC11      | 650     | 118          | 0.0221         | TO-247      |
| ROHM           | SCT3022KLHRC11      | 1200    | 95           | 0.0286         | TO-247      |

 Investigated various cooling methods used in EVs including power device cooling







- Characterize capacitor volume vs. capacitance
- Compared ceramic vs. film capacitors
- Looked at various inductor materials and carried out preliminary inductor designs





We successfully reviewed and analyzed recent technical developments that will enable high power density traction drive system